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The three-dimensional Patterson function for the insulin sulfate type A crystal is presented. The 
Patterson function is discussed in terms of possible symmetry within the asymmetric unit and of 
thc gross molecular structure. 

Introduction 

The X - r a y  studies of or thorhombic insulin sulfate 
crystals previously reported by Low and her as- 
sociates include two- and three-dimensional  Pa t t e r son  
functions of an air-dried crystal  form (Low, 1952) and 
two-dimensional  Pa t t e r son  projections of each of two 
wet forms (Low & Shoemaker ,  1959). The space group 
of all these forms is P212121; there are two molecules 
(of molecular weight 5733) in the asymmetr ic  unit.  
A ten ta t ive  packing model for the insulin s t ructure  
was early proposed on the basis of the Pa t te r son  
functions of the air-dried form (Low, 1952, 1953a, b). 
The model s t ructure  m a y  simply be described as 
made up of rod-like regions of high electron densi ty  
(perhaps either coiled or folded peptide chain) in close- 
packed a r ray  parallel to the a axis. F rom their  s tudy  
of the Pa t te r son  projections of the wet crystal  forms 
Low & Shoemaker  concluded tha t  these projections 
provide no clearcut evidence for the ten ta t ive  model 
as originally described. Calculation of the three- 
dimensional Pa t t e r son  function for the type  A crystal  
form was under taken  in the hope t h a t  it would provide 
fur ther  information about  the gross molecular struc- 
ture. 

Experimental  

The type  A bovinc insulin sulfate crystals used in this 
exper imental  work have been described by Low & 
Shoemaker  (1959). The wet c rys ta l s - -wi th  max imum 
dimension about  1 m m . - - w e r e  mounted  in thin-walled 
glass capillaries. Optical examinat ion,  crystal  mount-  
ing and  X- ray  pho tography  were carried out in the 
cold room in which the crystals were grown, a t  a 
t empera tu re  of 0 + 2 °C. Equi-incl inat ion Weissenberg 
photographs  were taken  with a modified Weissenberg 
camera  (Low, unpublished) using Cu K s  radiat ion and 
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a fi lm-holder of radius 57.3 mm. The multiple film 
method  was employed, and, for some layers,  two 
exposures of different durat ion.  

Three crystals were used in all: one for the collection 
of intensi ty da t a  from layers l = 0 - 6 ,  a second for 
layers l =  7-12, and a th i rd  for put t ing  the intensities 
from all the layers on the same scale. The unit-cell 
dimensions of these crystals  (numbered I, I I ,  and I I I  
respectively) are given in Table 1. The lack of exact  
ident i ty  between the  uni t  cell dimensions of these 
crystals  is discussed below. The intensities were 
es t imated by visual comparison with intensi ty  strips. 
About  2000 non-zero intensities with min imum spacing 
2.5/~ were measured for one octant  of the reciprocal 
lattice. The da t a  are v i r tua l ly  complete to about  3/~.  
For  spacings between 3 /~  and 2.5/~ the intensities of 
about  250 reflections could be m e a s u r e d - - t h a t  is, 
about  15% of the total  number  of possible reflections 
within this range. 

Table 1. Unit-cell dimensions 
Crystal a b c 

I 57-8 A 50.9 A 40.2 A 
II 57.8 51-9 38.9 
I I I  58.2 51.4 38.7 

The intensities were corrected with Lorentz-polariza- 
tion factors by the  method  described by Cochran 
(1948). They were pu t  on the same scale by comparison 
with intensities of the lkl and 2kl layers, obtained 
from crystal  I I I .  Corrections were not  made  for 
absorption.  

Intensity distribution and Patterson function 

Intensity distribution--Wilson plot 
The corrected intensities were a r ranged in order of 

increasing Bragg angle and averaged over small 
ranges of Bragg angle. A plot of log (Io}/(f~.} as a 
function of sin 2 0/~ 2 is given in Fig. 1. The atomic 
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scattering factor of nitrogen fN was used as a reason- 
able approximation to the average scattering factor; 
the values used were those given by McWeeny (1951). 
As was expected the experimental data do not follow 
the smooth theoretical curve (Luzzati, 1955). On the 
assumption that  an equation of the form (I} = 
Kf~ exp ( - 2 B  sin e 0/). e) is applicable to these data 
we may attempt to estimate the 'temperature param- 
eter' B from the plot in Fig. 1. (Use of the term 
'temperature parameter' is not meant to imply that  
the parameter B is that of the Debye-Waller theory.) 
A value of B=30 A e seemed reasonable for use in 
removal of the origin peak, although a unique value 
for B is by no means indicated by this plot. 

0-5L 
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(4 ) '  ' ................ I ° g z °  ~ ,., 

- 0-5 

I I I I I 
0"005 0 " 0 1 0  0 " 0 1 5  0"020 0"025 

sin 0 2 ( ~ )  (in A- ' )  

Fig. 1. Semi-logarithmic plot of (Io)/(J~v) against sin 2 0/~ 9. 
The broken line represents the theoretical Wilson plot 
corresponding to a ' temperature parameter '  B = 3 0  A ~. 

Removal of the origin peak 
The origin region of the Patterson function for a 

protein crystal is considerably more complicated than 
that  for crystals composed of small molecules. Besides 
the usual self-vectors of ordered atoms there are 
contributions--even at the origin itself--from vectors 
between nearest-neighbor atoms because of the large 
'temperature parameter'. There are also contributions 
from disordered regions: the liquid between the 
molecules and perhaps parts of the protein molecules 
as well. It  is impossible to remove the contribution 
to the origin pe~k from the self-vector~ of ordered 
atoms because the number of ordered atoms is not 
known. However, for convenience in computation a 
peak can usefully be subtracted from the origin region. 
The following rather arbitrary procedure was used 
for this purpose. A function was subtracted from the 
Patterson series proportional to the Patterson function 
of a single nitrogen atom with a 'temperature param- 
eter' estimated from the Wilson p lo t .  The propor- 
tionality constant was adjusted so that  Pc(0)=0, 
where Pc=P--F(OOO)2/V. The method used to sub- 
tract this function was to subtract values of its 

transform at each reciprocal lattice point from the 
corresponding IFIo 2. The transform was taken to be 
kq) (S), where ~0 (S) =f~ exp ( - 15S e) smoothed to be- 
come zero at S=0.36 A-l;  q)(S) is plotted in Fig. 2. 
The factor k was derived from the equation 

0-36 

22' IF(hkl)12o = EV4~ ~(S)SedS . 
h, k, l . '0  

The prime indicates that  F(000) e has been omitted 
from the summation. The function thus subtracted is 
of course spherically symmetrical. Because of series 
termination it consists of a large positive central peak 
surrounded by spherical shells of small absolute value 
and alternating sign. The central peak decreases to 
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Fig. 2. Plot of ~0(S) against S( = 1/d). The function qg(S) (solid 
line) was obtained from the function ]~,exp(--15S 2) 
(broken line where not superposed) by altering it at  high 
values of S. 

zero at about 3 • from the origin. There is a minimmu 
of about 1½ contour intervals (see below) at approx- 
imately 3½/~, and a maximum of about 2/3 contour 
interval at approximately 5 A from the origin. At 
distances greater than 5 A from the origin the absolute 
value of the subtracted function never exceeds a small 
fraction of one contour interval. 

Calculation of the Patterson function 
The Patterson function was calculated on I.B.M. 

machines using the M-card system (V. F. H. Scho- 
maker, unpublished) at the Statistical Services Labo- 
ratory of Massachusett.a Institute of Technology by 
Mr J. R. Steinberg. The intervals used were a/60, b/60 
and c/40. The calculated sections are given in Figs. 
3 and 4. 

Insulin sulfate crystals, as other protein crystals, 
deteriorate after 10ng exposure to X-rays, resulting in 
a general decrease in intensity of the diffraction 
pattern. This intensity change increases, in general, 
with increasing Bragg angle. Thus, intensity data 
taken from a crystal after different total times of 
exposure do not refer to the same state of the crystal. 
Each of the two crystals used for collection of intensity 
data was exposed for about 400 hr. in all, after which 
some deterioration had taken place. Therefore the 
practice of simply putting the data from all layers on 
a common scale, as followed here, involved the intro- 
duction of errors. These errors are probably not large 
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enough to affect the broad features of the Patterson 
function to any great extent. 

A further source of error arises from the lack of 
exact identity between the unit cell dimensions of 
crystals I and II. By an unfortunate oversight the 
unit-cell dimensions of these crystals were not mea- 
sured accurately until all the intensities had been 
measured. These two crystals came from the same 
batch, several crystals of which had previously been 
examined and had been shown to have nearly identical 
unit-cell dimensions. The dimensions for crystal II 
are close to average for the batch, but those of crystal I 
diverge from the average more than usual. The broad 
features of the Patterson function are probably not 
greatly affected by this circumstance. One basis for 
this assumption is that  the large majority of the 
reflections of high intensity are among those measured 
using crystal I. To verify this assumption hO1 and Okl 
Patterson projections were calculated using (a) co- 
efficients with 1=0-6 (crystal I), and (b) coefficients 
with all values of l(l=O-12) (crystals I and II). 
For each projection in the Patterson functions (a) and 
(b) were closely similar to each other and to the cor- 
responding projections calculated using complete data 
from one crystal alone (Low & Shoemaker, 1959). 
If the change in the unit-cell dimension along c between 
crystals I and II were accompanied by rotations of 
the molecules with respect to the axes, such close 
agreement would not be expected. Thus it seems likely 
that  the lack of complete identity between crystals 
I and II brings about only a 'blurring' of the Patterson 
function. 

Absolute scale 
The absolute scale of the IF] 2 values and therefore 

of the Patterson function cannot be determined by 
the Wilson method. Of the criteria which must be 
satisfied if this method is to be used, two not satisfied 
here are (1) that  the number of ordered atoms be 
known; (2) that  the data go out to spacings of the order 
of 1.5 .~. Although a 'Wilson line' might be drawn by 
employing the Luzzati (1955) criteria, this would not 
lead to a determination of the absolute scale since 
there would still remain the problem of the number 
of ordered atoms. The absolute scale could of course 
be determined by comparison with standard crystals; 
this had not been done for type A insulin sulfate 
crystals. Following the collection of absolute intensity 
data (Traub & Hirshfeld, unpublished studies) for the 
isomorphous insulin citrate crystals (Low & Berger, 
1960) we have been able to make a very rough estimate 
of the absolute scale of the insulin sulfate data by a 
comparison of Wilson plots for the two sets of data. 
The scale thus estimated for the Patterson function is, 
very approximately, 1 contour interval=40 e.2A -3. 
In the discussion which follows this estimate of the 
absolute scale has been employed. 

D i s c u s s i o n  

The calculated Patterson function for type A insulin 
sulfate is shown in sections in Figs. 3 and 4. If F2(000) 
had been included in the calculation all heights would 
have been increased by 17,200 e.%~ -3 or by approx- 
imately 430 contour levels. The function thus consists 
of a very high plateau modulated by small peaks and 
hollows. The origin peak, if not removed, would have 
been 95 contour levels above the average level 
F2(O00)/V. The highest peak outside the origin region 
is at x=l/2,  y=21/60, z=16/40 and is 7.3 contour 
levels above the average level. The difference in level 
between this peak and the lowest hollow is only 3% 
of the average level of the plateau. As in Patterson 
functions of other protein crystals, the great relative 
height of the plateau is due to the overlapping of 
vector peaks, to a high 'temperature parameter', and 
to disorder in the unbound liquid of crystallization; 
perhaps parts of the protein molecules are also dis- 
ordered. 

The Patterson function contains the usual 5 A shell, 
here somewhat extended along the y axis. There is a 
maximum within this region, lying at x-=O, y=3/60, 
z=2/40, at a distance of 3½ A from the origin. Sur- 
rounding the 5 A shell is a mainly negative region of 
irregular shape, (i.e., a region where the true value 
of the function is less than the average value), beyond 
which there are a number of positive peaks about 
10-15/~ from the origin. Similarly located peaks are 
found in the Patterson functions for ribonuclease and 
hemoglobin (Magdoff, Crick & Luzzati, 1956; Perutz, 
1949). The maxima near 5/~ and 10 A correspond, 
respectively, to the broad maximum near 5 • and 
to the shoulder near l0/~ in the Wilson plot. 

Sections of the Patterson function on mirror planes 
(basal and Harker planes) exhibit greater peakiness 
than do other sections. Magdoff et al (1956) have ex- 
plained this effect. 

A remarkable feature of the Patterson function is 
the presence of several very extensive 'negative' 
regions. There is a negative channel running the full 
length of the c axis (except for a few positive bridges) 
and dividing the cell into two parts. The channel may 
be seen in projection (with several positive islands 
emerging from it) in the c-plane Patterson projection 
(Low & Shoemaker, 1959). The channel encloses a 
region about the c axis of variable cross-sectional 
shape, but typically extends from approximately 
x = 0 ,  y = l / 2  to x = l / 3 ,  y = 0  (sections z=0-7 /40 ,  
12/40-20/40). On sections z=8/40-11/40 inclusive the 
region enclosed about the c axis narrows, the channel 
extending from approximately x=0 ,  y =  1/3 to x=  1/4, 
y=O (except for bridging on section z=lO/40). The 
width of the channel is quite variable. It  is most 
extensive near x=O, y= 1/2, sections z=0-7/40; near 
x= 1/2, y= 1/6, sections z=0-3/40; and near x= 1/3, 
y=O, sections z=12/40-18/40. The latter large nega- 
tive regions are the main reasons for the appearance 
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Sections of the three-dimensional Patterson function. Contours are at approximately 40 e.2A -3. The broken 'zero' contour 
represents the average level F2(000)/V. 'Negative' contours are omitted. 

of a negative channel in the a-plane Pat terson projec- 
tion. 

Pseudo-or ig in  peak  

Low & Shoemaker (1959) noted tha t  in the b-plane 
Pat terson projection for type A insul in sulfate crystals, 
the  highest  non-origin peak, at  x =  1/2, z--16/40, has 
about  i t  a peak dis t r ibut ion similar  to tha t  about  the 
origin. The highest  non-origin peak in the c-plane 
projection, at  x =  1/2, y =  21/60, is also a pseudo-origin 
peak. There is a peak in the a-plane projection at 

y = 21/60, z-- 16/40, but  i t  is not the highest  non-origin 
peak, nor does its position appear  to be a pseudo-origin 
for the projection. (As has been noted in a previous 
paper, the highest  peak in the a-plane projection is at 
y = l / 2 ,  z = l / 2 ,  and there are certain similarit ies 
between the peak distr ibut ions about  this point  and 
about  0, 0 (Low & Shoemaker,  1959). This apparent  
pseudo-centering is not related to nor explained by 
the discussion which follows.) 

We have compared the peak dis t r ibut ion in the 
three-dimensional  Pat terson about  the point  1/2, 21/60, 



464 T H R E E - D I M E N S I O N A L  P A T T E R S O N  F U N C T I O N  F O R  I N S U L I N  S U L F A T E  T Y P E  A 

c 
2 

t 

' - ~ ' J I  t . . . _ j )  . /  \ \  l ~ \ t . . , '  ) \ 

, . . . - ;  

~ i l ~-~,/ /o"/2" - - -  --~ I I t i I . . . , ,  , , ~  %j' Cc_>'(c._ 

) 'I',, ,,'" ,,'-'~ ~ ' m  F~ 
; (f.m,:,., / o \ " , W  \~_ 

, " - - . .  ,, 
.. . . . . . . .  . o , ,  ) / ~  ( , . - ~ -  " - :  " 

I I I I  ( ' 7  r-m\ "~ 
> b /2  x = ~-  a 

.~ a / 2  
~o f II(W)I J \-~--',y ) t.~iJi) 

I ,"-,  C"-, 
~, ,¢A~ ,,-,, ,,\o~) ', x , . _ ; . . -  .--,,._ ( _ . . .  

I )  , ," L ~ , - "  r - " ,  -,'-.., - , I . .-. ,  i i11 . -  

~-- ', ' ,_ . , ' ( ) i  i¢")t ., '2"/)1! t(((c.~_ 
",, ~' ;  <, ,J ' - ? ' ( / / t  , ~  

" . . . .  ¢ % / / f ~  I ---- 
, , , t ,  ~ / / t  ~t 

/ \ / I : - . . l l~._-:  L 2 / , - - - , ~  - ; = ~ .  ~ 
k "  tU.i  (1 , " " - J  .; / ~  
, . - x  .- I I  • l (  ~_J/ k \ q  

_~ ~\ i _J k ', I t i ' N  - - i  _~I 

,J~ / ff l ~ I ~ II l I/'h f ~/,-~kk"i 
y = ¢ b  

Fig. 4. Sections of the three-dimensional Patterson function at x = a/2 and y = b/2. Contours as in Fig. 3. 

16/40 with tha t  about 0, 0, 0. Although there is some 
correspondence, the two peak distr ibutions are rather  
dissimilar. 

These observations m a y  be explained on the basis 
of a non-crystal lographic two-fold or pseudo-two-fold 
axis which relates the two molecules in the asymmetr ic  
unit. A detailed exposition of all the arguments  in- 
volved has been given in the Appendix by two of us 
(B. W. L. and J.  1~. E,). There it is shown tha t  if 
the asymmetr ic  unit  of a crystal, space group P2~2121, 
should contain a two-fold axis parallel to a at y =  fl, 
z = l / 4 + ) ' ,  then the Pat terson function would have 
peaks at the equivalent  positions 1/2, 1/2 i 2fl, 1/2 i 2),, 
each peak having 1/4 the weight of the origin peak. 
Furthermore,  the position of each peak would be a 
pseudo-origin, with pseudo-origin character masked 
heavily in the three-dimensional function and in the 
a-plane projection, but  relat ively slightly in the 
b-plane and c-plane projections. The effects observed 
are for values of fl = ± 4.5/60 and y = ± 2/40. Since it 
is impossible to est imate the relative peak heights 
accurately we cannot dist inguish between a two-fold 
or pseudo-two-fold axis, nor between an axis parallel  
to a and one somewhat inclined to the a axis. We can 
define approximate  y and z coordinates of the two-fold 
or pseudo-two-fold axis as either (1) y = 4.5/60, z = 8/40; 
(2) y = 4 - 5 / 6 0 ,  z = 1 2 / 4 0 ;  (3) y = - 4 . 5 / 6 0 ,  z = 8 / 4 0 :  
(4) y =  -4 .5 /60 ,  z =  12/40. I t  should be noted that  this 
four-fold choice of y and z is simply dependent upon 
the absolute choice of origin for the co-ordinate system 
of the uni t  cell. There are two insulin molecules (of 
molecular weight 5733) in the asymmetr ic  unit. There- 
fore the two-fold or pseudo-two-fold axis relates one 
molecule to another.  

Wi thout  fur ther  evidence we might  offer the above 
conclusion rather  tentat ively.  However, Einstein & 
Low (1960) have found from completely independent  
evidence tha t  the two molecules of the asymmetr ic  
unit  of the type A crystal  are very probably  related 
by a two-fold or pseudo-two-fold axis. Given two 

independent  sources of evidence this conclusion ap- 
pears to be established. 

Gross molecular  structure 

The Patterson function does not appear  to provide 
any  further information about the gross molecular 
structure and intermolecular  packing. We have looked 
specifically for certain features which might  be ex- 
pected if, in the real structure, there were extensive 
lengths of s-helical  coil packed parallel  to each other. 
There are not any continuous regions of high vector 
density extending from the origin in any  direction. 
Nor is there any vector from the origin along which 
there is a series of peaks at regular intervals  of 5, 10, 
and 15 A, etc., which would occur (Crick, 1956) if 
extensive lengths of ~ helix were packed parallel  to 
each other. Further ,  the 5 .J~ shell shows very l i t t le 
anisotropy. 

If the insulin molecule should contain relat ively 
extensive lengths of ,~-helical coil, and these were not 
oriented even approximate ly  parallel  to each other, 
then it would be difficult  to find evidence for them in 
the vector structure. Moreover, if there were relat ively 
short lengths of s-hel ical  coil, these too would be 
difficult to detect even with the most favorable 
orientation. 

A P P E N D I X  

Pseudo-or ig ins  in the Pat terson function for space 
group P212121 where  the a s y m m e t r i c  unit contains 
a non-crys ta l lographic  two-fold  rotation ax i s  

parallel  to a crystal  axis  

Suppose tha t  in a crystal structure having space group 
P21212t there is a two-fold rotation axis, parallel  to 
a and with coordinates y--/7, z =  1/4+ )', which relates 
the two halves of the asymmetr ic  unit.  (We note that  
if f l = ) ' = 0 ,  the space group is 1212121 with a real 
origin at 1/2, 1/2, 1/2). Then there are eight general 
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symmetry-related positions, the coordinates of which 
are given below. 

(1) (o, o, o) + (x, y, z) 
(2) (½, 0, ½) + (~, ~, z) 
(3) (½, ½, o) + (x, ~, ~) 
(4) (0,½,½) + (~ ,y ,  5) 

(5) (0, 2fl, ½+2y) +(x,  y, 5) 
_ _  

(6) (½, 2fl, 27) + (~, y, 5) 
(7) ( ½ , ½ - 2 f l ,  ½ - 2 y ) + ( x , y , z )  

(8) (0, ½+2fl, 27) +(~, y, z) 

The set in each column are related by the space-group 
symmetry;  pairs on the same line are related by the 
two-fold axis of the respective asymmetric unit. The 
eight equivalent atoms of type r will be labeled 
r~, re, . . . ,  rs, where the coordinates of r~ are 
(0, 0, 0)+(rx, ry, rz), those of r2 are (1/2, 0, 1/2)+ 
(rx, ~y, r.,.), etc. The number of atom types r, s , . . .  
is n/2,  where n is the number of atoms in the asym- 
metric unit of space group P212~21. The vector from 
atom r] to atom sz will be denoted r~s~, and the cor- 
responding interatomic Patterson peak will be called 
an rs peak. 

The resultant of a two-fold screw axis and a parallel 
two-fold rotation axis is a pure translation, which is 
the vector sum of the translational component of the 
screw axis, plus twice the vector distance between the 
two symmetry  axes. Thus 

rlr7----- r5r3= 8187 = 8583 = • • • 

=T1 with components (1/2, 1/2-2j6,  1 / 2 - 2 ~ )  
r 2 r s  ~-- r6r4-- - -  8288  = 8684  = • . • 

= T2 with components (1/2, 1/2 +2fl, 1 / 2 - 2 7 )  . 

There are similar equations for the inverse vectors. 
The vectors ± T1, _+ T2 will be called special vectors. 
The positions of their termini in the Patterson will be 
called special positions and denoted + T1, ± T2. 

There are two rr peaks, two ss peaks, etc., super- 
posed at each of the four special positions, whereas 
there are eight rr peaks, eight ss peaks, etc., at the 
Patterson origin. Therefore each of the resultant peaks 
at a special position has 1/4 the weight of the origin 
peak. (We note that  in the case fl = y  = 0, space group 
I212121, these four peaks coincide at 1/2, 1/2, 1/2 to 
give a peak of the same weight as tha t  at 0, 0, 0.) 

Consider the distribution of all the interatomic 
Patterson peaks in relation to the origin and to the 
four special positions. I t  may be shown tha t  each 
special position is a pseudo-origin for a large fraction 
of these peaks. If for example each (interatomic) 
peak is displaced by the vector T1, a large number 
are brought into exact coincidence with the original 
positions of other peaks, from which, with certain 
exceptions, they are indistinguishable. Displacing the 
rs peaks at r3sj, rTsj, rjs~, and rjs5 (where j desig- 
nates any equivalent position), 

W l  + r 3 s j  = r 5 r 3  -4- r 3 s j  = r 5 s j  

W~ + r T s j  - -  r l r 7  A- r T s j  = r l s j  
rjs~ + TI = rjs~ + s~s7 = r j s 7  

rjs5 + T1 = rjs5 + sss8 = r i s 3 .  

Each of these peaks is brought into coincidence with 
the original position of another peak of the same 
weight, except for cases in which either one or the 
other is a multiple peak. The symmetry  gives rise to 
the doubling of peaks shown below. (The further 
multiplicities of rr peaks are unimportant  in the cases 
to which these results are to be applied (many atoms 
per unit cell)). 

r l s l = r 7 8 7 ,  r l s 5 ~ r 7 s 3 ,  r 2 8 2 = r s s 8 ,  r 2 8 6 - - ~ r 8 s 4 ,  

r a s 3 = r 5 s 5 ,  r 3 8 7 = r 5 s l ,  r 4 8 4 = r 6 8 6 ,  r 4 s s = r 6 8 2 .  

Thus when the entire set of rs peaks, including in 
general 48 single and 8 double peaks, are displaced by 
vector T1, four double peaks are brought into coin- 
cidence with the original positions of four single peaks, 
four single peaks with those of four double peaks, 
and 16 single peaks with those of 16 single peaks. 
The special position T1 is a pseudo-origin for all inter- 
atomic peaks (any r, s) associated with vectors having 
origins at equivalent positions 3 or 7, and/or having 
termini at equivalent positions 1 or 5 (except for the 
differences in weight of some of the related pairs of 
peaks). This set of interatomic peaks comprises 7/16 
of the total number of all the peaks, since 1/4 of all 
vectors have the required origins, 1/4 have the required 
termini, but 1/16 have both. The other special posi- 
tions show similar pseudo-origin character. 

In the three-dimensional Patterson the pseudo- 
origin character of the special positions is masked to 
a large extent, since each special position is a pseudo- 
origin for less than half the interatomic peaks. How- 
ever, the pseudo-origin character of these positions is 
much more marked in two of the Patterson projec- 
tions, those in which special positions coincide. In the 
b-plane projection T1 coincides with Te, and - T 1  
with - T e .  In the c-plane projection T1 coincides with 
- T 2 ,  and - T 1  with Te. 

In the b-plane projection the 8 equivalent positions 
of the unit cell are translationally biperiodic with 
period T1 = T2, henceforth denoted T:  

rlr~ = r2rs = r5r3 = rar4= T (any r) . 

Any atom in equivalent position 1, 2, 5, or 6 will be 
denoted type A, and any atom in equivalent position 
3, 4, 7, or 8 will be denoted type B. Thus the type A 
and type B atoms each comprise two of the four 
asymmetric units (of space group P212~21). The two 
sets are related by the translational period T. The 
Patterson function may now be considered to be made 
up of four parts:  PAA, PBB, PAB, and PaA, where the 
subscripts refer to the origin and terminqs, respec- 
tively, of the contributing vectors (i.e., PAB represents 
the contribution from vectors with origins at  type A 
atoms and termini at type B atoms). Because of the 
translational periodicity these functions are related as 
follows (where u is any position in vector space): 
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PAA(U)=PBe(U) 
PAB(U) = PAA(U -- T) = PBB(U -- T) 

PeA(U) = PAA(U + T) = PBB(U + T) . 

Tha t  is, PAA and PBe are identical,  PAB is the same 
function displaced by T in the Pat terson cell, and 
PeA is the same funct ion displaced by - T .  

We now consider the relat ionship between P(u) and 
P ( u + T ) ,  for a case in which the uni t  cell contains a 
great m a n y  atoms of nearly equal atomic numbers,  
arranged in fair ly random fashion. The projected 
Pat terson function and each of the four component  
functions defined above will then be quite smooth 
functions, especially when the temperature  parameter  
is large. 

P(u) = PAA(U) + PBB(U) + PAB(U) +P/3A(U) 
= [2PAA(U)+ PBA(U)]+PAB(U) 

P(u  + T) = [PAA(U) + 2PBA(U)] + PBA(U + T ) ,  

where the brackets have been inserted to draw atten- 
t ion to the close relationship between these functions. 
The functions enclosed in brackets represent, on the 
average, 3/4 of the value of P(u) and P ( u + T ) .  
Evident ly  they  are the same except for the different 
weighting of PAA and PeA in the two cases. For ease 
in discussion they  will be denoted 

P' =2PAA + PSA 
P " =  PAA+2PBA. (1) 

Then 
P(u) = P '  (u) + PAs(U) 

P(u  + T) = P" (u )  + PSA(U + T ) .  (2) 

We wisti to consider here the general locations of 
the broad m a x i m a  and min ima  of the Pat terson func- 
tion. (Such m a x i m a  and min ima  represent the super- 
position of a great m a n y  individual  interatomic peaks. 
For example,  in the case of type A insulin sulfate, 
there are probably on the order of 2000 ordered atoms 
in the unit  cell, and therefore about  4 × 106 interatomic 
peaks. In  any  projection there are on the order of 
2000 centers of interatomic peaks per A2.) We shall 
now demonstra te  in a non-rigorous fashion tha t  if P(u) 
has a m a x i m u m  at ul, then P(u) very probably  also 
has a m a x i m u m  in the vicini ty  of ul  + T. The argument  
is based on the following considerations: (a) a max- 
imum in P at Ul very probably is due mainly to a 
m a x i m u m  in P '  in tha t  location; (b) given a m a x i m u m  
in P '  near ul,  there is very probably  a m a x i m u m  in 
P "  near u l ;  (c) given a m a x i m u m  in P "  near Ul, 
there is very probably  a m a x i m u m  in P near u~ + T.  

The first of these considerations seems evident. 
If there is a m a x i m u m  in P at ul  which is due to a 
m a x i m u m  in PAe, P '  being fair ly level, then there will 
be no corresponding m a x i m u m  at u l + T ,  except if, 
accidentally,  PeA has a m a x i m u m  at u~ + T. However, 
the large major i ty  of the max ima  in P must  be due 
main ly  to m a x i m a  in P ' .  

Par t  (b) of the a rgument  follows from the close 
relationship between P '  and P "  (equation (1)). A 
m a x i m u m  in P '  m a y  in general be due to a m a x i m u m  
in PAA where PBA is fair ly level, to one in PBA where 
PAA is fair ly level, or to a combinat ion of m a x i m a  
in both of the component  functions. In  the first two 
cases, there is obviously a m a x i m u m  in P "  very close 
to tha t  in P ' .  In  the last case the positions of the 
resul tant  m a x i m a  in P '  and P "  depend on the shapes 
and positions of the two component  maxima.  In  
general the highest  points of both resul tant  m a x i m a  
will lie somewhere between those of the component  
maxima.  Therefore the m a x i m a  of P '  and P "  should 
lie close together in m a n y  cases, i.e. those in which 
the m a x i m a  in PAA and PBA lie close together. 

The considerations involved in par t  (c) are much 
the same as in par t  (a) and are based on the relat ive 
sizes of P and P" .  Given a peak in P "  at  ux, there 
will be a peak in P at ux + T except in those cases in 
which there is a sufficiently deep depression in PBA 
at ul  + T to counteract  it. 

The same argument  may  be applied to the positions 
of depressions in the Pat terson projection. 

Thus under  the assumed conditions there would be 
a considerable degree of pseudo-centering of the 
b-plane projection of the Pat terson function about  T 
and about  - T ,  where T = T I = T 2  (see above). The 
same would be true for the c-plane projection, where 
T = T1 = - T 2 .  There would be no such degree of 
pseudo-centering in the a-plane projection, since in 
tha t  projection there is no t ranslat ional  biperiodici ty 
within the unit  cell. 

I t  should be noted tha t  these results will hold even 
if there are widely different tempera ture  factors for 
different groups of atoms, or if there are large regions 
of complete disorder within the unit  cell, as in wet 
protein crystals. There would still exist an exact  
t ransla t ional  biperiodicity for the ordered atoms in 
two projections. The part  of the Pat terson function 
due to vectors originating and te rmina t ing  in the 
disordered regions must  be almost  level everywhere 
in the unit  cell, and would therefore not interfere with 
the pseudo-centering of ordered-atom Patterson peaks. 
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A bent-hydrogen-bond model for the structure of ice-I is proposed which uses a value for the H - O - H  
angle close to the vapour value of 104½ °. I t  is shown that  while it is at  least as consistent with the 
neutron-diffraction data  of Peterson & Levy as the 'half-hydrogen' Pauling model, it is to be 
preferred from bond energy and spectroscopic considerations. 

Recent  studies on the s t ructures  of hydra t ed  crystals  
by  neut ron  diffraction and  proton magnet ic  resonance 
indicate t ha t  the water  molecule, when hydrogen- 
bonded into the s t ructure,  is not  much distorted from 
its vapour  configuration. Thus in oxalic acid d ihydra te  
(Garret t ,  1954) and sodium sesquicarbonate (Bacon & 
Curry,  1956), where the angles subtended at  the donor 
water  oxygen by the acceptor oxygens are respec- 
t ively 84 ° and 114 °, the corresponding H - 0 - H  angles 
have been determined as 106 ° and 107 ° . This is to be 
expected, for it can be shown t h a t  the energy changes 
involved in the deformation of the  H - 0 - H  bond angle 
from the equilibrium value are a t  least several t imes 
higher t han  those involved in the format ion of bent  
O - H . . .  O hydrogen bonds. Hence, it would appear  
unlikely t h a t  in ice-I  the  H - 0 - H  angle should increase 
by about  5 ° from the vapour  value of 104½ ° to exactly 
the te t rahedra l  value, in order t ha t  linear 0 - H  ' ' -  0 
hydrogen bonds m a y  be formed. 

The main reason for the assumption in recent litera- 
ture (for example,  Frank ,  1958) of a te t rahedra l  value 
for the H - 0 - H  angle in ice is the neutron-diffract ion 
investigation of hexagonal  D20 ice by Peterson & 
Levy (1957), who have shown tha t  their  diffraction 
da t a  are in good agreement  with the 'half-hydrogen'  
model of Pauling (1935). I t  is the  purpose of this paper  
to suggest a modification of the Paul ing model which 
uses a value for the H - 0 - H  angle close to 1041°; 
to show tha t  it is also consistent with the neutron- 
diffraction da ta ;  and then to advance some arguments  
in its favour.  

If  we suppose t h a t  the H - O - H  angle is smaller than  
the  te t rahedra l  value (without being necessarily equal to 

O 

Fig. 1. Illustration of the splitting of a 'hMf-hydrogen' position 
into three 'one-sixth hydrogen' positions: Q-O, c:-~ H. 
(The splitting has been heavily exaggerated.) 

the vapour value), the so-called 'half-hydrogen '  position 
will be split into three 'one-sixth hydrogen '  positions 
dis t r ibuted a t  the vertices of an equilateral  t r iangle 
perpendicular  to the O . . - O  line, which will pass 
through the centroid of the tr iangle (Fig. 1). Here 
we have  assumed t h a t  O ' '  • H - 0 - H  -" • O lie in one 
plane (a reasonable assumption because for a given 
H - 0 - H  angle this involves the minimum non-lineari ty 
in the hydrogen bonds) and tha t  the non-lineari ty in 
the two hydrogen bonds from each oxygen is the same. 
I t  m a y  be noted t ha t  this model retains the mean 
statist ical  space group D~h-P63/mmc of the 'half- 
hydrogen '  Paul ing model for hexagonal  ice. If  O - H  = 
1 /~ and the angle I-I-O-I-I=104½ °, each 'one-sixth 
hydrogen '  position is shifted from the O • • • O line by 


